三角形ABCを三角形A'B'C'の位置まですべることなく転がしました。
このとき三角形ABCが通った範囲の面積を求めなさい。
円周率は3.14とします。
---------------------------------------------------
---------------------------------------------------
---------------------------------------------------
三角形ABCを三角形A'B'C'の位置まですべることなく転がしました。
このとき三角形ABCが通った範囲の面積を求めなさい。
円周率は3.14とします。
---------------------------------------------------
---------------------------------------------------
---------------------------------------------------
たがいに異なる4個の整数があり、その積は23100です。
この4個の整数の中から2個ずつとりだして合計6個の整数の組を作り、
それぞれの組についてその差を計算し、合計すると18になりました。
4個の整数を求めなさい。
---------------------------------------------------
----------------------------------------------------
---------------------------------------------------
AB×BA=□
A、Bは2けたの整数のそれぞれの位の数字を表し、同じ記号は同じ数字です。
P君:「答えは2872ですか?」
O君:「ちがいます。でも一の位の2は合っています。」
P君:「ほかの位は?」
O君:「それはひみつだけど、2872の4つの数字をうまく入れかえると正しい答えになります。」
さて、正しい答えはいくつでしょう?
---------------------------------------------------
---------------------------------------------------
---------------------------------------------------
図の9つのマスに1~9の数字を1つずつ入れました。
辺上の○の数字は、
となり合う2つのマスに書かれた数字の和をあらわしています。
?に入る数字は何ですか。
---------------------------------------------------
----------------------------------------------------
---------------------------------------------------
たて、横、ななめに並ぶ3個の数字の和がすべて等しくなるとき、
Aはいくつになりますか?
---------------------------------------------------
---------------------------------------------------
---------------------------------------------------
次の図で、三角形ADCは、
辺ACと辺ADの長さが等しい直角二等辺三角形です。
?の角度を求めなさい。
---------------------------------------------------
----------------------------------------------------
---------------------------------------------------
下の正方形ABCDの中の3×3のマス目に石を3個置きます。
ただし、石は1マスに1個までしか置けず、
上下左右のとなり合ったマスに2個ならべて置くことはできません。
全部で何通りの置き方がありますか。
---------------------------------------------------
---------------------------------------------------
---------------------------------------------------
すべて同じサイコロを図のように積み上げました。
このサイコロのA、B、Cの面と反対側の面のアルファベットはなんでしょうか?
---------------------------------------------------
----------------------------------------------------
---------------------------------------------------
1辺が12cmの正方形ABCDがあり、
弧ACは、点Dを中心として描かれた円の弧です。
また、点FはBCの延長線上の点です。
円周率を3とすると、色のついた部分の面積は何c㎡ですか?
---------------------------------------------------
---------------------------------------------------
---------------------------------------------------
4~9の6個の数字を1つずつ下の□に入れて、
3けたどうしの数の積が最大になるようにしてください。
---------------------------------------------------
----------------------------------------------------
---------------------------------------------------
下は、一の位の数字が7、千万の位の数字が9の、
8けたの数字をあらわしています。
この8けたの数字は、となりあう3つのけたの数字の和はどれも21になります。
千の位の数字はいくつですか。
---------------------------------------------------
---------------------------------------------------
---------------------------------------------------
図のように大きな長方形を
面積がそれぞれ12c㎡、24c㎡、36c㎡、48c㎡の4つの小さな長方形に分けました。
斜線部分の面積は何c㎡ですか。
---------------------------------------------------
----------------------------------------------------
---------------------------------------------------
立方体の各辺の半分の長さの点を結んで、各頂点から三角すいを切り落とすと、
見取り図のような正三角形と正方形で囲まれた美しい立体図形、
(アルキメデスの準正多面体)が出来上がります。
この図形の展開図は、図①、図②のようになります。
(問い1)
図①の展開図を組みたてたとき(A)の面と平行なのは、(B)の面です。
では、(ア)の面と平行なのは、(イ、ウ、エ、オ、カ、キ、ク)のどの面ですか。
(問い2)
図②の展開図を組みたてたとき、辺アイと平行な辺はどこですか。
②に書き込んでください。
(1つの辺が、2つに離れている場合は、両方に線を引いてください。)
---------------------------------------------------
---------------------------------------------------
---------------------------------------------------
図のように1辺が1cmの正方形が6つあります。
頂点の数は全部で12個です。
この12個の頂点の中の3つを結んで
面積が2.5c㎡の三角形を1つ作ってください。
---------------------------------------------------
----------------------------------------------------
---------------------------------------------------
真っ暗な夜。川のこちら岸にA、B、C、Dの4人がいます。向こう岸に行くには小さな橋を渡らなければいけません。橋は小さくて同時に2人までしか渡れません。また、橋を渡るときには懐中電灯が必要ですが、懐中電灯はたった1つしかありません。つまり2人で向こう岸に渡り、1人は懐中電灯を持ってもどり、また2人で向こう岸に行く、ということをくり返さないと4人全員が渡ることはできません。
①Aはこの橋を1人で渡ると1分かかります。
②Bはこの橋を1人で渡ると1分30秒かかります。
③Cはこの橋を1人で渡ると2分かかります。
④Dはこの橋を1人で渡ると2分30秒かかります。
⑤2人で渡る時は、2人のうちの遅い人の速さで渡ります。という条件のとき、4人全員が向こう岸に渡り終えるまでに最短で何分かかりますか。
---------------------------------------------------
---------------------------------------------------
---------------------------------------------------
下の展開図を組み立てたとき、
1つの頂点に集まる3つの面に書かれた数の和のうち、
最大な和はいくつですか?
---------------------------------------------------
----------------------------------------------------
---------------------------------------------------
1辺8cmの立方体があります。
この立方体の上の面の各辺のまん中の点に下の面の各頂点が重なるような大きさの立方体を置きます。
同じようにして、次々と立方体を図のような塔の形に積み上げていきます。
7個積み上げたとき、外側から目で見ることのできるこの搭の表面すべての面積の合計は何c㎡ですか。
ただし、塔の底の面積(床についている部分)は含みません。
---------------------------------------------------
---------------------------------------------------
---------------------------------------------------
A地点からB地点までの距離は16kmあります。
A地点からB地点まで40人の生徒が車とかけ足で移動します。
車には10人しか乗れません。車の速度はかけ足の速度の3倍です。
まず車は10人の生徒を乗せてA地点を出発し、
同時に車に乗れない残りの生徒もかけ足でA地点を出発します。
車はB地点に到着後すぐに折り返しA地点に向かい
途中で出会った生徒をまた10人乗せて、
B地点に到着後すぐに折り返して……を繰り返します。
さて、全部の生徒をB地点まで運ぶのに車は全部で何km走りましたか。
ただし、車の乗り降りや折り返しにかかる時間は考えないものとし、
かけ足の速度は一定とします。
---------------------------------------------------
----------------------------------------------------
---------------------------------------------------
四角形ABCDの対角線のACとBDの交わる点をOとします。
三角形ABDの面積は三角形BCDの面積の1/3で、
AO=2cm、DO=3cmです。
COの長さはDOの長さの何倍ですか。
---------------------------------------------------
---------------------------------------------------
---------------------------------------------------
0、1、2、3、4、5、6の7つの数字を1つずつ下の○に入れて式を完成させてください。
○×○=○○=○○÷○
---------------------------------------------------
----------------------------------------------------
---------------------------------------------------